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“Usual” Scenario

Consider random 3-SAT, and look at space of all satisfying
assignments of a formula.

Define two solutions to be adjacent if Hamming distance is
small: at most o(n) variables differ in value.

For small α, all solutions lie in a single “cluster”: any two
solutions are linked by a path of adjacent solutions.
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Below a threshold αd < αc : RS, single solution cluster.

Above αd : RSB, cluster fragments into multiple non-adjacent
clusters.
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Algorithmic Consequences

Cluster fragmentation is associated with formation of
frozen variables: local backbone of variables that take on
same value within a cluster of solutions.

This traps algorithms: lots of satisfying assignments but
hard to find them, making it a “hard satisfiable” subphase.

But physical picture also motivates new algorithms: survey
propagation explicitly takes account of cluster structure,
fixing only those variables that are frozen within a cluster.
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Definition

Graph G = (V ,E), |V | even

Partition V into two disjoint
subsets V1 and V2, |V1| = |V2|
Minimize bisection width
w = |(u, v) ∈ E : u ∈ V1, v ∈ V2|:
number of edges with an
endpoint in each subset

Applications: computer chip
design, resource allocation,
image processing
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Worst-Case / Average-Case Complexity

Corresponding decision problem is in P: is there a perfect
bisection (w = 0)?

Optimization problem is NP-hard.

What about random instances (Gnp ensemble)?
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Structure of Gnp Graphs

Mean degree of graph is α = p(n − 1). The following results on
the birth of the giant component are known [Erdős-Rényi,
1959]:

For α < 1, only very small components exist: size O(log n).

For α > 1, there exists a giant component of expected size
gn, g = 1− e−αg . All other components: size O(log n).

At α = 2 log 2, g = 1/2

Expected fraction of isolated vertices is (1− p)n−1 ≈ e−α.

At α = 2 log 2, n/4 isolated vertices
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Consequence: Bisection Width

Known results and bounds [Luczak & McDiarmid, 2001]:

For α < 1, w = 0 w.h.p.
Enough small components to guarantee perfect bisection

For 1 < α < 2 log 2, also w = 0 w.h.p.
Even close to α = 2 log 2, where the giant component
almost occupies entire partition, enough isolated vertices to
guarantee perfect bisection

For α > 2 log 2, w = Ω(n) and obvious upper bound
w/n ≤ α/2 w.h.p.
For 2 log 2 < α < 4 log 2, w/n ≤ (α− log 2)/4 w.h.p.
[Goldberg & Lynch, 1985]

Still leaves a gap at α = 2 log 2. Can we do better?
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Consequence: Bisection Width

Experimental results [Boettcher & Percus, 1999]:
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Consequence: Solution Structure

For α < 2 log 2, all solutions lie in a single cluster (RS)
[Istrate, Kasiviswanathan & Percus, 2006]

Enough small components that any two solutions are
connected by a chain of small swaps preserving balance
constraint

For α > 2 log 2, solution space structure is determined by
how giant component gets cut

Allon G. Percus September 3, 2009 12/25



Background
Random Graph Bisection

Previous Results
Upper Bound on Bisection Width
Computational Consequences

Giant Component Structure

Giant component
consists of a mantle
of trees and a
remaining core
[Pittel, 1990]

Individual trees are
of size O(log n)

Does optimal cut
simply trim trees, or
does it slice through
core?

Mantle

CORE
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Cutting Trees

As long as core is smaller than n/2, we can at least get an
upper bound on w by restricting cuts to trees.

Theorem
Let ε = α− 2 log 2. Then there exists an ε0 > 0 such that for
every ε < ε0, w.h.p.

w
n
<

ε

log 1/ε

for graphs with mean degree α in Gnp.

Among other things, this closes the gap at α = 2 log 2.
Now how do we prove it?
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Cutting Trees

Cut trees starting from largest one until giant component is
pruned to size n/2:

Mantle

CORE
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How Many Trees is Enough?

Let δn be “excess” of giant component, δ = g − 1/2.
Let bn be number of nodes in mantle.
Then δ/b is fraction of mantle’s nodes to cut.
Now find largest t0 such that δ/b equals fraction of nodes
living on trees of size ≥ t0.
If P(t) is distribution of tree sizes on mantle,

δ

b
=

∑∞
t=t0 tP(t)∑∞
t=1 tP(t)

The number of trees of size ≥ t0 is then

w ′ =
∞∑

t=t0

P(t)
bn∑∞

t=1 tP(t)
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Distribution of Tree Sizes

Fortunate result of probabilistic independence in Gnp [Janson et
al, 2000]:

P(t) is simply given by # of ways of constructing tree of
size t from q roots (q = (g − b)n, size of core) and r other
nodes (r = bn, size of mantle).
This is “just combinatorics”:

P(t) =

(
r
t

)
t t q

r
(q + r − t)r−t+1

(q + r)r−1

Let ρ = b/g. Then at large n,

P(t) ≈ t te−ρt

t!
ρt−1(1− ρ)
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Upper Bound on Bisection Width

We now have enough to calculate (or at least bound) w ′.
The rest of the proof is just cleaning up.

That gives the upper bound we need on bisection width w .

Theorem implies that w/n scales superlinearly in
ε = α− 2 log 2 for small ε. This turns out to have physical
and algorithmic consequences.

This holds for every ε < ε0, but ε0 may be very small!
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Expander Core of Giant Component

Look more closely at giant component structure. Define notion
of expander graphs:

Given graph G = (V ,E), imagine cutting V into two
subsets V1 and V2 (w.l.o.g. let |V1| ≤ |V2|).
Expansion of this cut is

h =
|(u, v) ∈ E : u ∈ V1, v ∈ V2|

|V1|
,

i.e., # of cuts per vertex.
If in a sequence of graphs of increasing size, expansion of
all cuts is bounded below by a constant, these are known
as expander graphs.
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Expander Core of Giant Component

Giant component is not an
expander: cutting the
largest tree gives
expansion h ∼ 1/ log n.

But it is a “decorated
expander” with an
identifiable expander core.
[Benjamini et al, 2006].

Decorations have certain
tree-like properties, and
are of size O(log n).

Mantle

CORE
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Optimal Cut Avoids Expander Core

Claim
There exists an αd > 2 log 2 such that for all α < αd , an optimal
bisection cannot cut any finite part of the expander core.

Idea:

Let ε = α− 2 log 2. From superlinearity of optimal bisection
width, w/εn→ 0 as ε→ 0.
Number of vertices cut from giant component ∼ εn, so
optimal cut requires arbitrarily small expansion.
Expander core cannot have cuts with vanishing expansion,
so for ε below some constant, optimal cut must avoid
expander core.
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Apparent Consequences: Solution Structure

For all α < αd , optimal bisections only cut decorations.

Since decorations are small, similar arguments seem to
apply as for α < 2 log 2: any two optimal bisections are
connected by a chain of small swaps preserving balance
constraint.

All solutions then lie in a single cluster (RS) up to αd .

Suggests that unlike in SAT, αd > αc ! This would be first
known example where single cluster persists through and
beyond critical threshold.
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Apparent Consequences: Algorithmic Complexity

For α < αd , optimal bisection can be found by ranking
expansion of decorations.
As in tree-cutting upper bound, cut decorations in
increasing order of expansion until giant component is
pruned to size n/2.
Decorations can be found in polynomial time [Benjamini et
al, 2006].
Difficulty is that unlike for trees, it could be best to cut a
decoration in the middle.
But decorations are small (O(log n)), and deciding where
to cut a given decoration is primarily a bookkeeping
operation: takes 2O(log n) = nO(1) operations.
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Apparent Consequences: Algorithmic Complexity

Conjecture
For graphs with mean degree α < αd in Gnp, there exists an
algorithm that finds the optimal bisection, w.h.p., in polynomial
time.

If this conjecture holds, it will provide a striking example of an
NP-hard problem where typical instances near the phase
transitions are not hard.
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Conclusions

For graphs in Gnp, new upper bound on bisection width that
closes the gap at the critical threshold αc .

All solutions appear to lie in a single cluster (RS) up to and
beyond αc , with an RSB transition possibly taking place
above this threshold.

Hardest instances do not appear to be concentrated at αc .

Analyzing ensembles of structured random graphs, such
as those in Gnr , remains largely an open problem.
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